Latest News


Filter by tags: Max Planck Clear all tag filters

16 news articles found

The UK’s Joint European Torus (JET) in Culham near Oxford, which closed at the end of December 2023 after 40 years of operation, “has demonstrated the ability to reliably generate fusion energy, whilst simultaneously setting a world-record in energy output”, according to the UK Atomic Energy Authority (UKAEA).

Date: Wednesday, 14 February 2024
Original article:

The Joint European Torus (JET) produced the largest amount of energy achieved in a fusion experiment during its final round of deuterium-tritium experiments, breaking its own record set in 2021.

Date: Saturday, 10 February 2024
Original article:

Munich-based start-up Proxima Fusion says it has completed its Pre-Seed fundraising of €7m ($7.48m) to support fusion power plant development based on the stellarator concept. The fundraising is co-led by Plural and UVC Partners, and joined by High-Tech Gründerfonds (HTGF) and the Wilbe Group.

Date: Friday, 02 June 2023
Original article:

General Atomics (GA) of the USA and Tokamak Energy of the UK have agreed to collaborate in the area of high temperature superconducting (HTS) technology for fusion energy and other industry applications. Meanwhile, Germany's Max Planck Institute for Plasma Physics will work with Proxima Fusion to further develop the stellarator concept.

Date: Wednesday, 31 May 2023
Original article:

A Chinese tokamak device has set a new world record for a steady-state high-constraint mode plasma operation and German researchers have discovered a way to build smaller and cheaper fusion reactors. Meanwhile a US Government Accountability Office report on achieving commercial fusion cautions that several challenges must still be overcome.

Date: Friday, 14 April 2023
Original article:

After successful recommissioning in autumn 2022, the Wendelstein 7-X stellarator fusion device at Germany's Max Planck Institute for Plasma Physics (IPP) has achieved some significant breakthroughs. In 2023, an energy turnover of 1 gigajoule was targeted, but researchers have now achieved 1.3 gigajoules. Moreover, a new record for discharge time was achieved, with the hot plasma maintained for eight minutes.

Date: Wednesday, 01 March 2023
Original article:

For the first time ever, through the Broader Approach agreement, a scientific partnership signed between Europe and Japan, experts have successfully measured the amount of tritium in the metal dust on walls similar to those of ITER, F4E announced. This will help scientists develop models to calculate the quantity of tritium that will be retained in the ITER Vacuum Vessel and improve several aspects of safety.

Date: Tuesday, 21 July 2020
Original article:

Expansion of the Wendelstein 7-X stellarator fusion device at Germany's Max Planck Institute for Plasma Physics (IPP) in Greifswald is entering a new stage with the final delivery of components for the divertor.

Date: Friday, 20 March 2020
Original article:

Scientists at Germany’s Max Planck Institute for Plasma Physics (IPP) on 25 June reported a new record performance at the Wendelstein 7-X stellerator, which began operation in 2015. Earlier experiments saw the plasma in the reactor achieve higher temperatures and densities than ever before, and now the records have been broken again in a new test with upgraded components. Like the tokamak, the stellarator uses large superconducting magnets to suspend hydrogen plasma and heat it to the temperatures and pressures needed to fuse hydrogen into helium. The Wendelstein 7-X has 50 superconducting magnet coils some 3.5 metres high. However, while the tokamak confines plasma in a doughnut shaped torus, the stellarator traps the plasma in a twisting spiral shape, which is designed to cancel out instabilities in the suspended plasma.

Date: Thursday, 28 June 2018
Original article:

The Korean Superconducting Tokamak Advanced Research (KSTAR), a tokamak nuclear fusion reactor, achieved a world record of 70 seconds in high-performance plasma operation, South Korea's National Fusion Research Institute (NFRI) said in a statement on 14 December. NFRI said a fully non-inductive operation mode - a "high poloidal beta scenario" - had been used to achieve this long and steady state of operation using a high-power neutron beam. It said various techniques, including a rotating 3D field, had been applied to alleviate the accumulated heat fluxes on the plasma-facing components.

Date: Thursday, 22 December 2016
Original article:




No Tags found.